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Abstract
We study the disorder-induced quantum Hall-to-insulator transition in a lattice
model with only off-diagonal disorder. The localization length of the system is
calculated by using the finite-size scaling method combined with the transfer-
matrix technique. By increasing the off-diagonal disorder strength we find that
the extended states do not float up in energy, but move towards the direction
of lower energy. As a consequence, a direct transition from a higher integer
quantum Hall state to an insulator becomes possible, in agreement with previous
studies based on a tight-binding model with only diagonal disorder.

1. Introduction

The scaling theory of localization [1] predicts that all one-particle states in a two-dimensional
(2D) system are localized in the absence of magnetic field. In a strong perpendicular magnetic
field, however, extended states appear in the centres of disorder-broadened Landau bands
where the localization length of electronic states diverges [2]. This effect has been intensively
studied in connection with the integer quantum Hall effect (IQHE).

Recently, there has been a great renewal of interest in studying the problem of the disorder-
induced quantum Hall-to-insulator transition. Despite a lot of numerical and theoretical studies,
the issue of how extended states at the centres of the Landau bands evolve with disorder strength
or magnetic field remains controversial. Khmelnitskii [3] and Laughlin [4] both argued that
the extended states do not disappear discontinuously or merge together but rather float up
in energy in the limit of weak magnetic field or strong randomness. This levitation picture
is crucial to the global phase diagram of the IQHE proposed by Kivelson et al [5], which
predicts that at a quantum transition the Hall conductance σxy can only change by e2/h as the
filling factor n changes and the final transition to the insulator always happens from the lowest
(n = 1) Hall plateau. But such a floating scenario for extended states has been challenged by
recent numerical studies [6–8] based on a tight-binding model with diagonal disorder, in which
the extended states are found to disappear without involving a floating-up process as disorder
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strength increases. It has been argued [8] that this behaviour is closely related to the lattice
effect and can be well understood in terms of annihilation of the topological Chern numbers.
However, recent numerical calculations [9, 10] have shown that floating up of the extended
states can also take place in the lattice model if long-range-correlated disorder potentials are
considered.

Most of the previous numerical studies focused on the tight-binding model with only
diagonal disorder. The role of off-diagonal randomness in the extended states of the IQHE
has not been investigated up to now. Recent studies [11–14] showed that 2D systems with
purely off-diagonal disorder might display anomalous localization behaviour due to a particle–
hole or chiral symmetry. Therefore, it is of particular interest to investigate the influence of
off-diagonal disorder on the extended states in the IQHE.

In the present paper,we study how the extended states in the IQHE evolve with off-diagonal
disorder strength on the basis of a tight-binding model. We calculate the localization length of
such systems by the finite-size scaling method combined with the transfer-matrix technique.
In the case of weak disorder, a series of extended states are found at the centre of each Landau
band. With increasing disorder strength, the positions of the extended states do not float up in
energy but move towards the direction of lower energy. By studying the localization behaviour
of the system at a fixed Fermi energy near the centre of the nth plateau at weak disorder, a direct
transition to an insulator (n → 0) is revealed as disorder strength W is increased. The critical
disorder Wc for the n → 0 transition is found to monotonically decrease with the decrease of
the magnetic field, and can be extrapolated to zero at zero magnetic field.

The paper is organized as follows: in the next section we present the model and the basic
formalism; in section 3 the numerical results are illustrated; and the last section is devoted to
a brief summary and discussion.

2. Model and formulism

We consider a tight-binding model on a square lattice with random nearest-neighbourhoppings
and a uniform magnetic field described by the Hamiltonian

H =
∑
〈i j〉

(ti j eiαi j c†
i c j + H.c.) (1)

where c†
m is the fermionic creation operator on site i and the nearest-neighbour hopping integrals

ti j are real random variables satisfying the probability distribution

P(ln ti j) = 1

W
, for − W

2
� ln ti j/t0 � W

2
. (2)

This disorder guarantees positive hoppings ti, j with typical variation of the random element
W that is believed to be a good measure for the strength of the off-diagonal disorder [14, 15].
In the following, we will set t0 as the unit of energy (t0 = 1). The effect of the magnetic field
appears in the complex phases of the transfer terms which in the Landau gauge read

αi j =
{

±2πα(ri · ex), if ri = rj ± ey,

0, otherwise,
(3)

where ri denotes the position of site i with lattice constant a = 1, ex and ey are unit vectors
in the x- and y-directions, and α is the amount of magnetic flux per plaquette in units of the
flux quantum hc/e. Here, we concentrate on the case α = 1/q (where q is an integer), so the
tight-binding band splits into q subbands.
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On a square lattice, site i can be labelled by its coordinates in the x- and y-directions,
denoted by integers m and n, respectively. The corresponding Schrödinger equation can be
written as

tm,n;m+1,nψm+1,n = Eψm,n − tm,n;m−1,nψm−1,n

− tm,n;m,n−1e−i 2πmαψm,n−1 − tm,n;m,n+1ei 2πmαψm,n+1. (4)

where E is the energy of electrons and ψm,n denotes the amplitude of the wavefunction at site
(m, n).

In order to calculate the localization length of electrons in a finite square system with linear
size M , we use the finite-size scaling method combined with the transfer-matrix technique. We
calculate the damping of wavefunctions in the x-direction for a long strip of size M × L with
L being extremely large. The periodic boundary condition is adopted in the y-direction. For a
given energy E , a 2M ×2M transfer matrix Ti can be easily set up, mapping the wavefunction
amplitudes at column m − 1 and m to those at column m + 1 in the strip. The propagation
along the strip is therefore described by the product of transfer matrices

QL =
L∏

i=1

Ti . (5)

The transfer matrix of equation (5) has M pairs of eigenvalues whose logarithms correspond
to the Lyapunov exponents of wavefunctions [16], (γi ,−γi) {i = 1, 2, . . . , M}. The largest
localization length λM (E) for energy E in a system with finite width M is given by the inverse
of the smallest Lyapunov exponent. In our numerical calculation, we choose the length of
the strip L to be over 2 × 105 so that the self-averaging effect automatically takes care of the
ensemble statistical fluctuation. We estimate and control the fluctuations from the deviations
of the calculated eigenvalues of two adjacent iterations which show satisfactory suppression
on increasing L.

We use the standard one-parameter finite-size scaling ansatz [16] to obtain the
thermodynamic localization length ξ . According to the one-parameter scaling theory, the
rescaled localization length λM/M can be expressed in terms of a universal function of M/ξ ,
i.e.,

λM (E, W )

M
= f

(
M

ξ(E, W )

)
, (6)

where f (x) ∝ 1/x in the thermodynamic limit M → ∞ for localized states while it approaches
a constant (∼1) when ξ diverges. Due to the symmetry of the lattice model, in what follows
we only consider the negative energy region E < 0.

3. Numerical results and discussion

We first study the localization behaviour of the system in the case of weak disorder at a fixed
magnetic field. As an example, figure 1(a) displays the rescaled localization length λM/M as
a function of energy E with α = 1/8 and W = 0.4 for different widths M of the system. In
this case, four well-defined Landau bands can be clearly seen. At the centres of the Landau
bands the rescaled localization length is independent of sample size M , which indicates that
the localization length increases linearly with increasing M . Therefore, the peaks of λM/M
denote the positions of the extended states in the thermodynamic limit. By contrast, λM/M for
energies away from the Landau band centres decreases as M increases, and hence they are truly
localized states. In figure 1(b), we plot the rescaled localization length λM/M as a function M
for energies close to the lowest Landau band centre. In order to minimize the uncertainty in the
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(a)

(b)

(c)

Figure 1. (a) The rescaled localization length λM/M as a function of energy E with α = 1/8
and W = 0.4. (b) The rescaled localization length λM /M for the strip system calculated for
M = 8, 16, 32, 64, 128, and 256 for energy close to the lowest Landau band. Inset: the one-
parameter scaling function. (c) The divergence of the thermodynamic localization length ξ at the
critical energy Ec. Inset: ξ versus |E − Ec| in a log–log plot with ν = 2.34 ± 0.02.

calculation due to the finite-size effect, we adopt a strip of width up to M = 256 to obtain the
critical energy Ec. With increasing energy from the lower side of the lowest subband centre,
an M-independent λM/M can be clearly seen at a critical energy Ec ≈ −3.3. But away from
Ec, λM/M monotonically decreases as M increases, showing a feature of localized states. All
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Figure 2. The rescaled localization length λM /M as a function of E for different disorder strengths
with α = 1/8 and M = 64.

the data in figure 1(b) can be collapsed onto a single curve λM (E)/M = f [M/ξ(E)] as shown
in the inset of figure 1(b), where ξ is the thermodynamic localization length. In figure 1(c), we
show the thermodynamic localization length ξ as a function of energy E . One can clearly see
that ξ diverges at Ec, which again confirms the existence of a delocalized state at the centre
of the band. Our best-fit analysis gives a critical energy Ec = −3.30 with a critical exponent
ν = 2.34±0.02 appearing in ξ = ξ0|E − Ec|−ν on the two sides of Ec (the critical exponent ν
is given by the slope of the straight line in the inset log–log plot of figure 1(c)). The localization
length exponent ν is in remarkable agreement with the analytical value [2] ν � 7

3 and previous
numerical results [17–19] obtained for tight-binding models with only diagonal disorder.

To illustrate how the extended states evolve with the disorder strength, we have calculated
the energy dependence of the rescaled localization length λM/M for a fixed system width
M = 64 with the same field strength as in figure 1. As presented in figure 2, λM/M decreases
with increasing strength of disorder. The peaks associated with higher-energy Landau bands
are destroyed earlier than those of lower ones, and the peak for the lowest Landau band is
the last to vanish at a disorder of about W ≈ 2.4, beyond which no extended states exist in
the whole energy regime. In the entire range of disorder strength shown in figure 2, the peak
positions of the Landau bands do not float up in energy, but move down towards the low-energy
regime. Thus, in contrast to the case of diagonal disorder, in which extended states are found
to disappear without changing their positions at strong disorder, the displayed results clearly
indicate a moving down of the extended states before they disappear.

Figure 2 also shows that the second-lowest extended state moves distinctly faster than the
lowest one, so the first plateau between these two extended states should be narrowed during
this ‘float-down’ process. If such a narrowing is to continue with the increase of the disorder
strength, then it can eventually result in the vanishing of the first plateau, leading to a direct
plateau–insulator transition. To investigate this possibility, we have calculated the disorder
dependence of the rescaled localization length by fixing the Fermi energy near the centre of
the n = 2 plateau (E = −1.6) at weak disorders. The results are shown in figure 3(a) where
λM/M is displayed versus W for different system widths M (M = 16, 32, 64, and 128).
With increasing sample width M , an M-independent fixed point appears at a critical disorder
strength Wc ≈ 1.3, indicating an extended state. But away from Wc, λM/M monotonically
decreases with increase of M as a typical behaviour in localized states. Thus the existence of
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Figure 3. (a) The rescaled localization length λM /M as a function of disorder strength W for
E = −1.6, which corresponds to the centre of the n = 2 IQHE plateau at weak disorder. (b) The
scaling function at E = −1.6. Here, different symbols represent different disorder strengths W .
Inset: ξ versus |W − Wc | in a log–log plot with ν = 2.42 ± 0.01.

a single Wc indicates a direct n = 2 → 0 transition, which is forbidden in the global phase
diagram. The finite-size scaling method can also be applied to the n = 2 → 0 transition to
verify the one-parameter scaling theory. As shown in figure 3(b), by collapsing the data in
figure 3(a) as λM (W )/M = f [M/ξ(W )], we find ξ ∝ |W − Wc|−ν with ν = 2.42 ± 0.01
(the inset of figure 3(b)), which is very close to the value obtained for the lowest Landau band.
Similar direct transitions can also be induced by reducing the strength of the magnetic field α.
Figure 4(a) shows the critical disorder Wc for n = 1 → 0, 2 → 0, and 3 → 0 transitions as a
function of α. We can see that Wc monotonically decreases with the magnetic field strength
which is extrapolated to zero at zero magnetic field. In figure 4(b), we plot the critical energy
Ec versus the magnetic field α at W = 0.2 and 0.8. It is found that the extended state energy
Ec for each Landau band is linearly proportional to the magnetic field and moves towards the
direction of lower energy as disorder strength increases, consistent with the phase diagram
obtained in [6], which predicts direct transitions from higher Hall plateaus (n > 2) to the
insulator.
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Figure 4. (a) The critical disorder Wc for n = 1 → 0, 2 → 0, and 3 → 0 transitions as a function
of α. (b) The critical energy Ec versus α at W = 0.2 and 0.8.

4. Summary

In summary, we have studied the disorder-driven quantum Hall state-to-insulator transition
in a lattice model with only off-diagonal disorder using the well-developed transfer-matrix
method. By increasing the strength of disorder, we found that the positions of the extended
states do not float up in energy but move down in the direction towards lower energy. As
a consequence, a direction transition from the IQHE to an insulator becomes possible. Our
results are in agreement with the scenario proposed by Liu [6] and Sheng et al [8] based on
the lattice model with diagonal disorder.
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